
LETTERS TO THE EDITOR
Tail Strength to Combine Two
p Values: Their Correlation
Cannot Be Ignored

To the Editor: The population-based case-control study is

a useful approach to evaluating genetic association with

many common and complex diseases. In general, one first

uses the generalized linear model to fit the data and then

uses an asymptotic test to detect the true association. In

addition to this regression-based analysis, when Hardy-

Weinberg equilibrium (HWE) holds in the population,

testing HWE in cases has been used for indicating the asso-

ciation. Because the regression-based analyses (including

the trend test and the likelihood-ratio test) are generally

more powerful than testing HWE in cases, they are often

employed in case-control studies. Less attention is paid

to testing HWE in cases.

In the July 2008 issue of The American Journal of Human

Genetics, Wang and Shete1 proposed a novel approach of

using the tail strength to combine the p value of the likeli-

hood-ratio test (LRT) for association and the p value of

an exact test for the deviation from HWE in cases. Taylor

and Tibshirani2 originally proposed the tail strength as

a measure of the overall strength of association for a large

number of hypotheses in microarray analyses and

genome-wide association studies (GWAS). Compared to

Fisher’s combination of p values3, which weights each p

value equally, the tail strength weights each ordered p value

by its expectation under the null hypothesis. The tail

strength can be used for combining independent and

dependent p values and is not restricted to any special

genetic model underlying the data. Wang and Shete1

combined the two p values by using the tail strength and

extended the original tail strength by using the medians

of the ordered p values as weights. They derived asymptotic

null distributions for the tail strengths by applying the addi-

tive model and using the mean and median as weights,

respectively. Their results showed significant improvement

in terms of the power when the tail strengths were used.

They also showed that the type I errors were under control,

although we notice that almost all reported type I errors in

their tables are less than the nominal levels.

Normally, when the tail strength is used as a test statistic,

its asymptotic null distribution is approximated by Monte-

Carlo simulation procedures. Simulation-based approaches

to determining the tail probabilities or p values of complex

statistics have limitations for applications in GWAS.4,5 In

this situation, deriving their asymptotic distributions is

important. Although Wang and Shete1 derived the asymp-

totic null distributions and critical values for their tail-

strength statistics, they assumed in their derivations that

the two p values were independent even though in the intro-
The Americ
duction section they mentioned that they would use the tail

strength to combine two dependent p values. When the two

p values are correlated, their asymptotic null distributions

may be inappropriate. Using two test statistics different

from those in Wang and Shete,1 Zheng and Ng6 noticed

that the correlation between the p values of the trend test

and testing HWE between cases and controls (HWDTT7)

could also vary from the recessive (REC) model to the addi-

tive (ADD) model, the multiplicative (MUL) model, and the

dominant (DOM) model. As we mentioned before, Wang

and Shete1 considered the tail strengths based only on the

ADD model. However, the performance of testing HWE in

cases would also vary across the genetic models. For

example, it is known that testing HWE cannot detect asso-

ciation under the MUL model even though testing HWE has

been used for detecting association.8–10

Therefore, the performance of the tail strength of Wang

and Shete1 can be potentially affected by two factors that

were either ignored or not examined in their article. One

is the correlation between the two p values of the LRT

and the test for HWE in cases, and the other is the

unknown underlying genetic models. In this letter, using

Monte-Carlo simulation procedures, we study the correla-

tions between the p values of the LRT and the exact test

for Hardy-Weinberg proportion in cases under the four

genetic models. If the two p values are indeed correlated,

we examine the performance of the tail-strength statistics

of Wang and Shete1 under the null and alternative hypo-

theses. The analytical formula of the correlation, if any,

between the LRT and the exact test for HWE used in

Wang and Shete1 is difficult to obtain. Therefore, we

consider the combination of the p values of the trend

test and chi-square test for HWE between cases and

controls (HWDTT), from which the asymptotic correlation

between the two p values has been obtained.6,7 This new

tail strength with the correlation is denoted by TSC. We

further derive its asymptotic null distribution and critical

value (see Appendix A). Comparison between our TSC

and that of Wang and Shete1 is obtained by Monte-Carlo

simulations under the null and alternative hypotheses.

We also denote the tail strengths based on the mean and

median in Wang and Shete1 by TS and TSM, respectively.

Here we report the main results from our simulation

study. In the simulation, we assumed HWE holds in the

population. In each replicate, 500 cases and 500 controls

were generated under the null hypothesis with the base-

line penetrance fixed at 0.02 (the probability of disease

with a genotype of zero risk alleles), and minor-allele

frequency (MAF) increases from 0.1 to 0.5 in increments

of 0.1. We used a total of 10,000 replicates to estimate

the null correlations between the two p values, the type I

error rates, and power. The nominal levels 0.01 and 0.05

were used. For LRT statistics, we considered 1-degree-of-

freedom tests. Therefore, for each genetic model under
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the alternative hypothesis (REC, ADD/MUL, and DOM),

an optimal test is available for the LRT or trend test. In

the simulation, we consider three LRTs and three trend

tests, optimal for the three genetic models. Therefore,

a total of nine tail strengths were considered in the simula-

tion: TS, TSM, and TSC each have three model choices de-

pending on the targeted genetic model. The results of the

null correlations between the two p values in Wang and

Shete1 and corresponding type I errors are reported in

Table 1 for the nominal level 0.01 and in Table 2 for the

nominal level 0.05.

The results in Tables 1 and 2 follow similar patterns. Thus,

we focus onTable 1. The simulated null correlationsbetween

the p value of LRT and the p value of the exact HWE test in

cases indicate that the null correlations are not zero when

the LRT is optimal for the REC or DOM models, but they

are close to zero for the ADD (MUL) model. Hence, the

type I errors of the TS and TSM of Wang and Shete1 are under

control when the LRT is optimal for the ADD (MUL) model

but are largely inflated when the LRTs are optimal for the

REC and DOM models, especially for the REC model. Note

that Wang and Shete1 only considered the LRT optimal for

the ADD model. Therefore, their type I errors were under

control. On the other hand, the type I errors of TSC, which

takes care of the correlations, are close to the nominal level

regardless of the targeted genetic models.

We also conducted simulations to compare the powers

of the TS, TSM, and TSC. For the TS and TSM, the correla-

tions between the two p values were not incorporated.

Thus, on the basis of results in Tables 1 and 2, their powers

could be inflated under the REC and DOM models, but not

under the ADD and MUL models. The powers are pre-

sented for the TS, TSM, and TSC (from left to right) under

the REC model (Figure 1) and ADD model (Figure 2). The

Table 1. Simulated Null Correlations of the Two p Values of
Wang and Shete1 and the Asymptotic Type I Errors with
Nominal Level 0.01

MAF Model Simulated Null Correlations TS TSM TSC

0.1 REC 0.2702 0.0262 0.0272 0.0067

ADD �0.0049 0.0056 0.0057 0.0081

DOM 0.0238 0.0072 0.007 0.009

0.2 REC 0.2327 0.0248 0.0251 0.0123

ADD 0.0018 0.0092 0.0092 0.0108

DOM 0.0328 0.0129 0.0128 0.0116

0.3 REC 0.1672 0.0268 0.026 0.0131

ADD 0.0187 0.0104 0.0101 0.0112

DOM 0.0505 0.017 0.017 0.0092

0.4 REC 0.1454 0.0225 0.0225 0.0118

ADD �0.0149 0.0076 0.0074 0.0083

DOM 0.0716 0.0157 0.0153 0.0092

0.5 REC 0.1037 0.0197 0.0201 0.0128

ADD �0.0047 0.0074 0.0077 0.0103

DOM 0.0919 0.0174 0.0175 0.0081

TS uses means as weights, TSM uses medians as weights, and TSC is the

proposed test with the correlations. Three genetic models, which are only

used for constructing the optimal LRTs (for TS and TSM) and optimal-trend

tests (for TSC), are considered.
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plots for the MUL and DOM models can be found in the

Supplemental Data available online (Figures S1 and S2,

respectively). The parameter values of the simulations

under the alternative hypotheses are similar to those in

Tables 1 and 2, except that the genotype relative risk

(gamma2, which is defined as the ratio of penetrances

with two risk alleles to those with zero risk alleles) ranges

from 1 to 2, and the MAF is fixed at 0.3. The ‘‘asymptotic’’

and ‘‘simulated’’ powers in the figures were based on the

critical values obtained from 10,000 parametric bootstrap

samples and 10,000 permutations, respectively.

Figure 1 (under the REC model) shows that TS and TSM

have similar powers and are more powerful than TSC. This

could be due to the fact that TS and TSM had inflated type

I errors as shown in Tables 1 and 2. On the other hand,

Figure 2 shows that the powers of TS, TSM, and TSC are

similar under the ADD model because the three statistics

had similar type I errors. For the TS and TSM, the bootstrap

and permutation procedures yield similar powers under

the ADD, MUL, and DOM models but have slightly

different powers under the REC model.

We also studied empirical powers of the TSC, the optimal

trend test, a robust test MAX311, and classical Pearson’s test

for association under the four genetic models. The descrip-

tion and summary of our findings are given in Appendix B.

The results show that the TSC has moderate power

improvement under the REC model but loses significant

power under the ADD and MUL models. This can be ex-

plained by the fact that testing HWE has little power under

the ADD and MUL models.

In summary, the tail strength may improve power under

some specific genetic models after correction for the corre-

lation. However, when the underlying genetic model is

unknown, the robust statistics are more preferable.6,11

Table 2. Simulated Null Correlations of the Two p Values of
Wang and Shete1 and the Asymptotic Type I Errors with
Nominal Level 0.05

MAF Model Simulated Null Correlations TS TSM TSC

0.1 REC 0.2702 0.0841 0.0832 0.0436

ADD �0.0049 0.0394 0.0403 0.0477

DOM 0.0238 0.0409 0.0408 0.0462

0.2 REC 0.2327 0.0765 0.0772 0.0476

ADD 0.0018 0.0443 0.0441 0.0557

DOM 0.0328 0.0513 0.0524 0.0472

0.3 REC 0.1672 0.0727 0.072 0.0482

ADD 0.0187 0.0438 0.0438 0.0468

DOM 0.0505 0.0519 0.0524 0.0531

0.4 REC 0.1454 0.0695 0.0678 0.0458

ADD �0.0149 0.0519 0.0516 0.0521

DOM 0.0716 0.0574 0.0569 0.0494

0.5 REC 0.1037 0.0722 0.0704 0.0481

ADD �0.0047 0.0474 0.0483 0.0509

DOM 0.0919 0.0647 0.0633 0.0475

TS uses means as weights, TSM uses medians as weights, and TSC is the

proposed test with the correlations. Three genetic models, which are only

used for constructing the optimal LRTs (for TS and TSM) and optimal-trend

tests (for TSC), are considered.
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Appendix A

The Asymptotic Null Distribution of the TSC

with the Correlation

Denote the HWDTT by Z*, which is a statistic testing

HWE between cases and control and was proposed by

Song and Elston.7 Denote the trend test as Zx, where

x ¼ 0, 0.5, and 1 for the REC, ADD (MUL), and DOM

models, respectively.11–13 Under the null hypothesis H0,

(Z*, Zx) follows the bivariate normal distribution N(0,

S1) with the density function f1, where S1 ¼
�

1 rx

rx 1

�
,

and (�Z*, Zx) follows the bivariate distribution N(0, S2)

with the density function f2, where S2 ¼
�

1 �rx

�rx 1

�
.

The expressions for rx were given in Zheng and Ng for

different x values.6 The following derivation can be modi-

fied to the tail strength of any two correlated p values.

The p value of Z* is P*¼ 2F(� jz*j), and the p value of Zx is

Px ¼ 2F(� jzxj), where F is the cumulative distribution

function of the standard normal N(0, 1), and z* and zx

are observed statistics. Then the joint distribution of P*

and Px is:

Thus, its density function can be written as

f ðx1,x2Þ ¼ vFðx1,x2Þ
vx1vx2

¼
P1
i¼0

exp
h
� fF�1

�
x1
2

�
g2
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x2
2

�
g2
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:

Therefore, the ordered p values have the cumulative

function given by

Figure 1. The Asymptotic and Simulated Powers under the REC Model
The tests from left to right are TS, TSM, and TSC. Gamma2 is the ratio of penetrances with two risk alleles to no risk alleles.
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The density function of the ordered p values is given by

g
�
xð1Þ,xð2Þ

�
¼

vF
�
xð1Þ,xð2Þ

�
vxð1Þ,vxð2Þ

¼ f
�
xð1Þ,xð2Þ

�
þ f
�
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, 0%xð1Þ%xð2Þ%1: (A1)

Once we obtain the above joint distribution g(x(1), x(2)),

we can use the results of Wang and Shete1 to obtain the

asymptotic null distribution for TSC:

TSC ¼ 1

2

��
1� Pð1Þ3 3

�
þ
�

1� Pð2Þ3
3

2

�

:

The density function of TSC is given by

fTSCðuÞ ¼
R 4

9ð1�uÞ
1
6ð1�4uÞ

4
3
gðu,vÞdv, when u ˛½�1:25,0:25�;

¼
R 4

9ð1�uÞ
0

4
3
gðu,vÞdv, when u ˛½0:25,1�,

where g is given in Equation (A1). We also consider a test

for departure from HWE only by using cases in Appendix

B. In this case, the above formulas can also be used except

that the correlation needs to be modified accordingly.

Appendix B

Power Comparison between the Optimal-Trend Test,

MAX3, Pearson’s Test, and the TSC Tests

We compared the performanceof several test statistics under

the alternative hypotheses with the genotype relative risk

1.5, the disease prevalence 0.1, and 500 cases and 500

controls. The nominal level was 0.05. All critical values

were obtained from the simulation with 100,000 replicates.

The estimated powers were obtained from 10,000 replicates.

We considered four different genetic models: REC, ADD,

MUL, and DOM models. Under each model the optimal-

trend test was used.11–13 These optimal-trend tests may not

be realistic when the underlying genetic model is unknown.

Thus, for comparison, we included two robust tests: MAX3,

proposed by Freidlin et al.11, and the classical Pearson’s test

with 2 degrees of freedom. For the tail strength, we consid-

ered TSC (the tail strength with the correlation). Two TSCs

Figure 2. The Asymptotic and Simulated Powers under the ADD Model
The tests from left to right are TS, TSM, and TSC. Gamma2 is the ratio of penetrances with two risk alleles to zero risk allele.
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were considered. One is discussed in the text (denoted by

TSC2, where HWDTT is used), and the second one only

uses cases to detect departure from HWE (denoted by TSC1).

The results from the simulations are reported in Table S1.

The results show that TSC1 is usually more powerful than

TSC2. Note that TSC1 is more powerful than the optimal

trend test under the REC model when MAF is small to

moderate. But TSC1 is much less powerful than the optimal

trend test under the ADD and MUL models. This is because

testing HWE has little power under these two models. TSC1

catches some power under the DOM model, but it is slightly

less powerful than the optimal-trend test. On the other

hand, when the genetic model is unknown, we cannot use

the optimal-trend test. However, we compare the TSC1

with the robust test MAX3, which does not require that

we know the genetic model. Table S1 shows that, except

for the REC model, MAX3 is more powerful than TSC1.
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Is the Tail-Strength Measure
More Powerful in Tests
of Genetic Association?

To the Editor: It is well known that Hardy-Weinberg equi-

librium (HWE) is an important property in population

genetics. Deviation from HWE among cases can provide

evidence for a valid association.1–4 Thus, it would be advis-

able to incorporate information from the HWE test for the

The Americ
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improvement of power in detecting associated variants in

genetic association studies. In the July 2008 issue of The Jour-

nal, Wang et al.5 described a test statistic, the tail-strength

(TS) measure,6 for evaluation of the global null hypothesis,

that theSNPwasnotassociatedwith disease,which is a func-

tion of two p values: one from a logistic-regression test in

a geneticassociation study and one froma HWEtest in cases.

The authors further extended the mean-based TS measure to

a median-based measure (TSM) by measuring the deviation

of each p value from its median value instead of its expected

value. On the basis of simulation studies and real disease
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